نسبت طلائی یا عدد فی

دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام «نسبت طلایی» یا Golden Ratio.

پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی a2=a*b+b2 را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا» 1.61803399 یا 1.618 خواهیم رسید.

شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود بلکه در طبیعت نیز کاربردهای بسیاری دارد که به تدریج راجع به آن صحبت خواهیم کرد.

یک بنای یونان باستان که نسبت طلایی در ساختار آن مشاهده می شود.

اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.

مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا» 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi2=phi+b2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا» عدد طلایی را با phi نمایش می دهند)

طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا» معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.

کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : «هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فيثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلايي می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد».

تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد. برای اطلاع بیشتر از نحوه محاسبه نسبت طلایی به این سایت سری بزنید.

 


آشنایی با سری فیبوناچی
 
باورکردنی نیست اما در سال 1202 لئونارد فیبوناچی (Leonardo Fibonacci) توانست به یک سری از اعداد دست پیدا کند که بعدها بعنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید. آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، بسادگی به این رشته از اعداد خواهید رسید :

0,1,1,2,3,5,8,13,21,34,55,89,144, …

البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبوناچی نمی دانند و یا حداقل آنرا جمله صفرم سری می دانند. نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت :

1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89, …

و یا :

1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179و …

بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.

بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :

fn =  Phi n / 5½

که در آن Phi عدد طلایی میباشد. البته فرمول های دقیق دیگری وجود دارند که اعداد سری و یا اعداد بعدی (Successor) این سری را نمایش می دهند که دراین مطلب به آن نخواهیم پرداخت.

معمای زاد و ولد خرگوش!

در واقع فیبوناچی در سال 1202 به مسئله عجیبی علاقمند شد. او می خواست بداند اگر یک جفت خرگوش نر و ماده داشته باشد و رفتاری برای زاد و ولد آنها تعریف کند در نهایت نتیجه چگونه خواهد شد. فرضیات اینگونه بود :

– شما یک جفت خرگوش نر و ماده دارید که همین الآن بدنیا آمده اند.
– خرگوشها پس از یک ماه بالغ می شوند.
– دوران بارداری خرگوشها یک ماه است.
– هنگامی که خرگوش ماده به سن بلوغ می رسد حتما» باردار می شود.
– در هر بار بارداری خرگوش ماده یک خرگوش نر و یک ماده بدنیا می آورد.
– خرگوش ها هرگز نمی میرند.

حال سئوال اینجاست که پس از گذشت یکسال چه تعداد خرگوش نر و چه تعداد خرگوش ماده خواهیم داشت؟ (پاسخ را شما بدهید)

مارپیچ فیبوناچی


به شکل زیر نگاه کنید و ببینید که به چه زیبایی از کنار هم قرار دادن تعدادی مربع می توان رشته فیبو ناچی را بصورت هندسی نمایش داد. حال اگر در هر یک از این مربع ها از نقاط قرمز ربع دایره هایی رسم کنیم در نهایب به نوعی از مارپیچ حلزونی شکل می رسیم که به مارپیچ فیبوناچی (Fibonacci Spiral) معروف می باشد. بدیهی است که نرخ رشد و باز شدن این مارپیچ متناسب با نرخ بزرگ شدن اعداد در سری فیبوناچی می باشد.

            

سری فیبوناچی چه در ریاضیات چه در فیزک و علوم طبیعی کاربردهای بسیار دیگری دارد، ارتباط زیبای فاصله های خوش صدا در موسیقی، چگونگی تولد یک کهکشان و … که کاربرد این سری جادویی را بیش از پیش نشان می دهد.


طریقه رسم نسبت طلایی با گونیا و پرگار 

پاره خط AB را در نظر بگیرید. مساله ما یافتن نقطه E بر روی این پاره خط می باشد به طوری که نسبت AE به EB یک نسبت طلایی باشد.  

مرحله ۱ :  از نقطه B خط BC را عمود بر آن طوری رسم کنید که اندازه BC نصف اندازه AB باشد. ( به کمک پرگار می توانید این کار را انجام بدهید.) 

مرحله ۲ : نقطه A را به نقطه C وصل کنید.

مرحله ۳ : از نقطه C دایره ای به شعاع BC رسم کنید. این دایره خط AC را در نقطه D قطع می کند.

مرحله ۴ : از نقطه A یک دایره به شعاع AD رسم کنید. این دایره خط AB را در نقطه E قطع می کند به قوری که نسبت AE به EB همان نسبت طلایی است.

طریقه رسم مستطیل طلایی با گونیا و پرگار

مستطیل CBGD را در نظر بگیرید. مساله ما یافتن مستطیلی است که نسبت اضلاع آن یک نسبت طلایی باشد.

مرحله ۱ : نقطه A را در وسط DG پیدا کنید.

مرحله ۲ : از نقطه A یک دایره به شعاع AB رسم کنید.

مرحله ۳ : خط DG را ادامه داده تا دایره به مرکز A را در نقطه E قطع کند. نسبت DE به DC همان نسبت طلایی است و مستطیل CFED یک مستطیل طلایی می باشد.

 


 


نسبت طلایی در خوشنویسی

استاد میرعماد با پالایش خطوط پیشینیان و زدودن اضافات و ناخالصی‌ها از پیکره نستعلیق و نزدیک کردن شگرف نسبت‌های اجزای حروف و کلمات، به اعلا درجه زیبایی یعنی نسبت طلایی رسید و قدمی اساسی در اعتلای هنر نستعلیق برداشت. با بررسی اکثریت قاطع حروف و کلمات میرعماد متوجه می‌‌شویم که این نسبت به عنوان یک الگو در تار و پود حروف و واژه‌ها وجود دارد و زاویه ۴۴۸/۶۳ درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلم گذاری و ادامه رانش قلم، حضوری تعیین کننده دارد. این مهم قطعاً در سایه شعور و حس زیبایی‌شناسی وی حاصل آمده، نه آگاهی از فرمول تقسیم طلایی از دیدگاه هندسی و علوم ریاضی. میرعماد این نسبت‌ها را نه تنها در اجزای حروف بلکه در فاصله دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و قطعات رعایت می‌‌کرده است.


نسبت طلایی در طبیعت

به اشکال شبیه چشم روی بدن پروانه که علامت گذاری شده است،توجه کنید.نسبت فواصل طولی و عرضی این علائم یک نسبت طلائی است.

پوسته مارپیچی یک حلزون نمونه ای ساده ودرعین حال زیبا، از نسبت طلائی است.

نسبت طلایی در ساقه گیاهان


نسبت طلایی در عکاسی

ترکیب بندی تصویر، در کتابها و مجلات تخصصی عکاسی، اغلب به شکل یک نسخه تجویزی ارائه میشود. انگار که پیروی از تعدادی قاعده میتواند نتیجه قانع کننده ای را تضمین کند. شاید بهتر باشد این قواعد را تنها به عنوان چکیده ایده هایی در نظر گرفت که عکاسان (و البته نقاشان و سایر هنرمندان قرنها پیش از اختراع دوربین) آنها را برای خلق یک تصویر تاثیر گذار، مفید یافته اند.
هر ترکیب بندی عکسی را میتوان کارآمد دانست به شرط این که عناصر صحنه به طور موثر با بینندگان مورد نظر آن عکس، ارتباط برقرار کند. در اغلب موارد، نکته اساسی در شناسایی عناصر کلیدی صحنه نهفته است تا با تنظیم محل دوربین و میزان نور دهی، آنها را از دل سایر اطلاعات تصویری متفرقه، بیرون بکشید. همین اشیاء مزاحم، بسیاری از عکسها را خراب میکنند. اگر عکاسی را تازه شروع کرده اید، بهتر است به جای تمرکز زیاد روی جزییات خیلی خاص، تنها روی ساختار کلی صحنه تمرکز کنید. چرا که تاثیر آنها در مقابل ترکیب بندی عمومی عکس، بسیار سطحی است.
 

در این مقاله به معرفی سه روش کاربردی در امر ترکیب بندی تصویر پرداخته خواهد شد. در آغاز به معرفی کلی تکنیکی میپردازیم که قرنهاست شناخته شده است یعنی قانون تعادل (یا قانون طلایی – Golden Mean). این قانون در واقع یک فرمول هندسی است که توسط یونانی های باستان ابدا شده.استدلال بر این است که ترکیب بندی ای که بر اساس این تئوری تشکیل شده باشد، تاثیرگذار و قوی مینماید. ایده اصلی که در پس این تئوری است در واقع استفاده از خطوط هندسی است که به سادگی توسط چشم بیننده دنبال شوند. طی قرون متمادی، قانون تعادل (یا قانون طلایی – Golden Mean) راهبردی مهم و ابزاری کارآمد برای هنرمندان و نقاشان به حساب می آمد. امروزه با توجه به ارزش این ابزار، آشنایی با آن به عکاسان نیز توصیه میشود.

قانون یک سوم  (خطوط و نقاط طلایی):


قانون یک سوم
در واقع مختصر شده مفهوم طلایی است. فلسفه اصلی که در پشت این مفهوم قرار دارد از یک ترکیب و کادر بندی متقارن و مستقر در مرکز کادر که معمولا کسل کننده است جلوگیری می کند. 4 خط تقسیم کننده کادر، خطوط طلایی و محل برخورد این خطوط، نقاط طلایی نامیده میشوند. (شکل های شماره یک و دو)


از بین بردن تقارن با استفاده از قانون یک سوم به دو شکل می تواند صورت بگیرد. در یک روش می توان تصویر را به دو بخش مجزا تقسیم کرد به نحوی که یک قسمت
یک سوم و قسمت دیگری دو سوم تصویر را شامل شود (شکل شماره یک).

شکل شماره یک

در روشی دیگر، تمرکز مستقیما بر روی نقاط طلایی است. فرض کنید که منظره ای بسیار زیبا و بدیع پیش رو دارید اما این منظره فاقد یک نمای هندسی و به اصطلاح Geometric خوب و جذاب است. به عبارت دیگر در عین اینکه منظره بسیار خاص و زیبا است اما اگر به صورت تصویر در بیاید تا حدودی کسل کننده خواهد شد.
راه حل چیست؟ سعی کنید در این منظره یکنواخت یک نقطه عطف و تمایز پیدا کنید، نقطه ای که بتواند یکنواختی و یکدستی نما را از بین ببرد. سپس این سوژه را روی یکی از نقاط طلایی قرار دهید. این نقطه اولین نگاه بیننده را جذب کرده و مخاطب را به دیدن باقی تصویر دعوت میکند. (شکل شماره دو)

شکل شماره دو


برای تعیین برخی از اندازه ها به نسبتهای شکیل و زیبا، معروفترین فرمول، شیوه ای است که یونانیان باستان ابداع کرده اند و به » نسبت طلایی» معروف است . نسبت طلایی در اصل، فرمولی ریاضی و دارای زیبایی بصری است. در این روش : ابتدا مربع را با خطی عمود بر دو ضلع مربع به دو مستطیل مساوی تقسیم می کنند، سپس محل تقاطع آن خط با یکی از اضلاع مربع ( نقطه X) را مرکز دایره ای به شعاع قطر مستطیل قرار می دهند ( فاصله X تا Y) و با ترسیم این دایره و تعیین محل تقاطع آن با امتداد ضلع مربع ( نقطه Z) طول مستطیلی معروف به «مستطیل طلایی» به دست می آید که عرض آن برابر ضلع مربع و است و نسبت این طول و عرض ثابت و دارای زیبایی خاصی است (نسبت اندازه پاره خط C به A با نسبت اندازه A به B یکی است) یونانیان در ساخت بسیاری از اشیا و ابینه و معابد و کوره ها و … آن را به کار می بستند.


قانون یک سوم کادر نیز در واقع همان مفهوم طلایی است. 4 خط تقسیم کننده یک کادر، خطوط طلایی و محل برخورد این خطوط، نقاط طلایی نامیده میشوند.

مارپیچ طلایی

یکی از ابزارهای ترکیب بندی عکس برای هدایت چشم بیننده به نقطه مورد نظر عکاس، مارپیچ طلایی است. استفاده از این تکنیک در سوژه هایی که با نقاط طلایی سازگار نبوده اند قابل استفاده است. نحوه رسم مارپیچ طلایی نیز به این صورت است.



نسبت طلایی در بدن انسان
 
دانشمندان گذشته نیز از نسبت طلایی استفاده های زیادی کرده اند. به عنوان مثال لئوناردو داوینچی در ترسیم نقاشی معروف خود از بدن انسان از نسبت طلایی بهره گرفته است.

در بدن انسان مثالهای بسیار فراوانی از این نسبت طلایی وجود دارد. در شکل زیر نسبت M/m یک نسبت طلایی است که در جای جای بدن انسان می توان آنرا دید. به عنوان مثال نقاطی از بدن که دارای نسبت طلایی هستند:

نسبت قد انسان به فاصله ناف تا پاشنه پا

نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج

نسبت فاصله شانه تا بالای سر به اندازه سر

نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر

نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا

اینها تنها چند مثال از وجود نسبت طلایی در بدن انسان بود که بدن انسان را در حد کمال زیبایی خود نشان می دهد.

در تصاویر زیر نسبت خط سفید به آبی، آبی به زرد، زرد به سبز و سبز به بنفش یک نسبت طلایی است!!

برای دیدن اطلاعات بسیار دقیقی از وجود نسبت طلایی در دندانها و دندان پزشکی به این سایت حتما سری بزنید

37 دیدگاه»

  مجتبی wrote @

مطلب بسیار زیبا و کاملی بود. تو دبیرستان به ما این عدد رو گفتن.خیلی جالب بود. می شه (1 + جذر 5) تقسیم بر 2!

  Gabriel wrote @

شما که این همه از زیبایی نوشتید, چرا رنگ تیتر هاتون زرد بود؟ رنگ زرد با پس زمینه سفید… بدترین ترکیب که میشد استفاده بشه. فقط چشم رو اذیت می کرد و خونده هم نمی شد.

  www.SorenPhoto.com wrote @

پست جالبی بود !! موفق باشی .
———–
http://www.SorenPhoto.com
اولین و بهترین وب سایت عکس ایرانیان

  mohammad wrote @

سلام
مطلب شما بسيار عالي بود
خيلي خيلي متشكر
خدا قوت

  reza wrote @

عالی بود. ممنون.
واقعا لذت بردم

  iman wrote @

man faghat moondam ghadima chetor in jooor chiza ro kashf mikardan, ini ke alan goftin ke fogholadas, sadetar az inasham jaye taajob va taamogh dare va faghat be in natije mishe resid ke eddeii taravoshat zehni dashtano daran ke mitoonan in chiza ro be esbat beresoonan va 100% maghzeshoon faratar az maghze yek ensan mamoooli hast.

  مصطفی.پ wrote @

مطلب خیلی جالبی بود . ممنون
بزرگترين هتل آپارتمان مشهد مقدس
بد نيست سري بزنيد http://www.sharghzist.com

  mohamino » wrote @

[…] برای اولین بار از الکترون فیلم گرفته شد ماهواره بسیار سریع اینترنت به فضا رفت از ژاپن جرج کلونی در تایم دبی شرکت های ایرانی را تحریم کرده است رقیبی برای مک بوم ایر IBM نسبت طلایی […]

  ابوالفضل wrote @

آدم سرش گیج میره.

  hamy wrote @

wwooowww

  عليرضا بلالي مقدم wrote @

با سلام مطالب جالب بود اما تازگي نداشت در خيلي از كتاب هاي رياضي خودمان آنها را قبلا مطالعه كرده ام اگر خواستيد بيشتر از اينها درج نماييد حاضر به همكاري با شما هستم .دوست و استاد بزگوار من آقاي موسي صديقي خيلي مطالب تازه تري را پيدا نموده اند با من در تماس باشيد

  عرفان wrote @

با چه شماره ای یا ایمیلی با شما(آقای علیرضا بلالی)در ارتباط باشیم؟کار فوری دارم!!!!!!!!!!!!!!!!!!!!!!!!!!!1

  عرفان wrote @

با چه شماره تماس یا ایمیلی میشه با شما (آقای علیرضا بلالی)در ارتباط بود؟نیاز فوری به اطلاعاتتون دارم!!!!!!!!!!!!!!!!!!!!!!1

  786MaSha wrote @

من علیرضا بلالی نیستم. اشتباه شده

  حمید رضا آل یسین wrote @

این نسبت کشف شده یکی از بسیار نسبتهایی است که انسان هنوز کشف نکرده .
البته بسیاری از دانشمندان نیز براین عقیده اند که هیچ چیز بدون تناسب نیست و این میتواند انسانهایی که به خدا اعتقاد ندارندرو به این فکر بندازه که : اگر در طبیعت این نسبت باعث ایجاد اینهمه نظم میشه آیا چیزی اتفاقی حادث شده ؟
من میگم نه اتفاق اصلا معنی نداره هیچ چیز اتفاقی نیست
همه چیز یک علت داره

  دلوان wrote @

كل مطالب خيلي عالي بود من بيشتر مطالب سايت شما رو خوندم كه همشون عالي و مفيد بودند

با تشكر دلوان

  فرهاد wrote @

سلام . اسم اصلی نسبت طلایی در واقع نسبت الهی هست !
خیلی جاها که اینو نوشته ! در ضمن اسمی بهتر از این شما سراغ دارین ؟
نکنه شبها برنامه های آقای !؟ رضا فاضلی رو میبینید !؟؟

  کاوه wrote @

مقاله جالبی است، ممنون.
با این توضیح که تعدادی از عکس ها لود نمیشود. احتمالاً آدرس لینک آن تغیر کرده.
با توجه به اینکه برای درک بهتر مطلب، وجود عکسها کمک زیادی میکند، با تصحیح آدرس لینک ها، به بهبود کار کمک کنید.

عکسهایی که دیده نمیشوند:
– یک بنای یونان باستان که نسبت طلایی در ساختار آن مشاهده می شود.
– نسبت طلایی در ساقه گیاهان
– در تصاویر زیر نسبت خط سفید به آبی، آبی به زرد، زرد به سبز و سبز به بنفش یک نسبت طلایی است!!

تشکر

  پیکرتراش wrote @

جالب بود، ممنون
موفق باشید

  sarallah wrote @

فکر نمیکنم نظر من روی یه همچین چیزی مهم باشه

  شادان wrote @

مطالب خیلی جالبی بود و من هم بسیار به چنین مو ضوعاتی علاقهمند هستم و بسیار خوشحال و سپاسگزار می شوم اگر راجع به چنین موضوعاتی و البته جدید تر اطلا عاتی داشته باشم لطفا باز هم ادامه بدهید( قدرتمند تر )

  ياسر wrote @

جالب بود

  یارداد wrote @

شاید حقیقت داشته باشد . شاید.

  سید wrote @

بدنبود مطالب جدید بفرستید

  sarah wrote @

khili khoshhalam ke dar en mored matlab peyda kardam chon man vaghan en jor matalebam

  zoha wrote @

سپاس
بسیار جالب بود
من قبلا با فیبوناچی آشنا بودم ولی امروز برای اولین بار تو کتاب راز داوینچی با عدد فی روبرو شدم وهمین باعث شد تا مطلب جالب و کامل شما رو بخونم.
واقعا حیرت انگیزه
موفق باشید

  yaser wrote @

It is interesting
thanks.

  zahra wrote @

واقعا خسته نباشید.خیلی کامل و زیبا بود.

  royal wrote @

kheyli bhal boood mikham raje ba matlabet toye hamayesh sohbat konam !

  میثم wrote @

آقای بلالی مقدم بهتره علمشون رو زیاد به رخ نکشند آدمهای تو خالی اینجوری رفتار میکنند

  farzin wrote @

سلام
مطالب خیلی زیبا بود و تکراری
من میخواهم روی این عدد در دندانپزشکی کار کنم
لطفا به من ای میل بزنید
farzin.akbr@yahoo

  hamed wrote @

ممنون خیلی عالی بود تا به حال چنین مطلبی در این مورد ندیده بودم

  r.m wrote @

خیلی جالب بود
اگه مطالب دیگه ای درباره ی رابطه های ریاضی داشتی برام ایمیل کن …

  mahdi mozaffari wrote @

محاسبه مستطیل طلایی به تایین عدد اول برمی گردد.
اگر در محاسبه اعداد اول دقت نظر شود و اعداد اول درست تایین شود راه گشایی برای محاسبه مستطیل طلایی خواهد بود.
آنچه ما در ذهن از چیندمان اعداد داریم تعبیر درستی از اعداد اول به عنوان سر سلسله اعداد طبیعی نمی باشد

  hasan wrote @

خوب اما من برای تحقیق به مطالب بیشتری احتیاج دارم

  SHIVA wrote @

ممنون خیلی بدردم خورد.

  parisa wrote @

kolan asase hasti bar payeye adade phi bana gozari shode !


پاسخی بگذارید

در پایین مشخصات خود را پر کنید یا برای ورود روی شمایل‌ها کلیک نمایید:

نشان‌وارهٔ وردپرس.کام

شما در حال بیان دیدگاه با حساب کاربری WordPress.com خود هستید. بیرون رفتن / تغییر دادن )

تصویر توییتر

شما در حال بیان دیدگاه با حساب کاربری Twitter خود هستید. بیرون رفتن / تغییر دادن )

عکس فیسبوک

شما در حال بیان دیدگاه با حساب کاربری Facebook خود هستید. بیرون رفتن / تغییر دادن )

عکس گوگل+

شما در حال بیان دیدگاه با حساب کاربری Google+ خود هستید. بیرون رفتن / تغییر دادن )

درحال اتصال به %s

%d وب‌نوشت‌نویس این را دوست دارند: